Parametric Trends in the Combustion Stability Characteristics of a Single - Element Gas - Gas Rocket Engine
نویسنده
چکیده
Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) December 2013 2. REPORT TYPE Technical Paper 3. DATES COVERED (From To) December 2013January 2014 4. TITLE AND SUBTITLE Parametric Trends in the Combustion Stability Characteristics of a SingleElement Gas-Gas Rocket Engine 5a. CONTRACT NUMBER In-House
منابع مشابه
Three Dimensional Stability Analysis of a Liquid Propellant Combustor
A theoretical study analyzing three-dimensional combustion acoustic instabilities in a liquid propellant rocket engine combustor has been conducted. A linear theory based on Crocco’s pressure sensitive time lag model is used. To apply this theory the combustor is divided into two main components, including the combustion chamber and the converging part of the nozzle. The assumption of concentra...
متن کاملOptimization of GRI-mech 3.0 Mechanism using HCCI Combustion Models and Genetic Algorithm
This paper presents a modeling study of a CNG Homogenous Charge Compression Ignition (HCCI) engine using single-zone and multi-zone combustion models. Authors' developed code could be able to predict engine combustion and performance parameters in closed part of the engine cycle. As detailed chemical kinetics is necessary to investigate combustion process in HCCI engines, therefore, GRI-m...
متن کاملEffect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation
The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...
متن کاملTheoretical and Experimental Analysis of OM314 Diesel Engine Combustion and Performance Characteristics Fueled with DME
Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...
متن کاملOperating Range Expansion in a HCCI Natural Gas Engine Using Charge and Thermal Stratification in Combustion Chamber
HCCI operating window has two distinct boundaries of knock at higher load region and misfiring/partial burning at lower load region. Moreover, there is no conventional direct way of controlling combustion timing in an HCCI engine. In this research, experimental study were carried out to investigate the effect of thermal and charge stratification on expansion of the operating range of a natural ...
متن کامل